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Introduction

Obfuscation

• Semantics-preserving program transformation

• Makes analysis difficult both for humans andmachines

• Useful when you cannot trust man-at-the-end

• Used bymalware authors to evade detection and analysis
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Understanding Obfuscated Code

Inside-Out Approach

• Directly analyzes program behavior

• Not limited to particular obfuscation schemes

Dynamic Analysis

• Uses concrete values from program execution

• Covers only executed behavior
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Identifying Branch Conditions

Input-Dependent Jumps

• Jumps whose target address depends on the input

• Decision points in program execution

• Can provide branch conditions to improve the coverage

Symbolic Execution

• Generates constraints for each execution path
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The Problem

It is hard to identify input-dependent jumps and branch conditions

from obfuscated execution

• Expressions for the target address are too complex

• Application of symbolic execution fails or times out
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Our Contribution

Simplification of Obfuscated Execution

• Computation is represented by dynamic data flow graphs

• Non-input-dependent computation is simplified to a constant

Identification of Input-Dependent Jumps

• Relation of execution before and after obfuscation is revealed

• Branch conditions are identified with reasonable effort
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Our Approach

Obfuscation Mitigation

• Simplify redundant operations with constant operands

• Generate and simplify dynamic data flow graphs from traces

• Traces are generated using dynamic binary instrumentation

Code Trace Graphs Jumps
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Dynamic Data Flow Graph

Directed Acyclic Multigraph

• Nodes represent computed values

• Nodes have id, type, and additional information

• Edges are directed from operands to operations

• Edges are labeled by position numbers.
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Graph Examples
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Graph Generation

• A graph initially has nodes for output values of interest

(the target address of jumps)

• It grows by adding predecessors to nodes

• For write access, nodes are added for the operation and

reading of the operands

• For read access, nodes are added for the writing of its value

• If there is no latest writing, a node for an input variable is added

• Graphs grow until no node can be added
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Graph Simplification

Simplification rules are applied until no rule can be applied

• Constant value identification

• Value embedded in the binary
• Value of the trap flag

• Constant value propagation

• Data movement simplification

• Operation simplification

• Nodes that do not reach an output node are removed
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Simplification Rule Samples

Rules using associativity:

• (Add x . . . (Add y . . . )) → (Add x . . . y . . . )

• Same for And, Mul, Or, Xor

Like terms are combined:

• (Add x . . . x︸ ︷︷ ︸
20

)→ (Mul x 20)
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Simplification Rule Samples

Rules using identity:

• (Add x (Neg x))→ 0, (Add x 0)→ x

• (And x (Not x))→ 0, (And x 0)→ 0, (And x x)→ x

• (Neg (Neg x))→ x, (Not (Not x))→ x

• (Or x 0)→ x, (Or x x)→ x

• (Xor x 0)→ x, (Xor x x)→ 0
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Input-Dependent Jump Identification

A jump is input-dependent if its simplified graph has:

• a node for an outside input variable or

• a node for a result of a system-dependent operation

If an input-dependent jump is found, all access to flag operation

results in the computation of the jump is considered as used
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Experimental Results

• Most jumps in obfuscated execution are not input-dependent

• Numbers of identified input-dependent jumps are often same

for obfuscated and original execution

• Branch condition can be understood using simplified graphs
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Samples

• Factorial and bubble sort programs

• For x86 Windows
• Obfuscated by Code Virtualizer 1.3.9.10 and 2.2.2.0,

Themida 2.4.6.0, and VMProtect 2.13.6 and 3.1.2.830

• Tigress Challenges

• For x64 Linux
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Jumps from Factorial of 10

Obfuscator Total Jumps Identified Jumps

Original 22 11

Code Virtualizer 1 24752 11

Code Virtualizer 2 10492 11

Themida 2 9895 887

VMProtect 2 56198 11

VMProtect 3 16785 11
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Jumps from Bubble Sort of 3, 2, and 1

Obfuscator Total Jumps Identified Jumps

Original 19 6

Code Virtualizer 1 33502 6

Code Virtualizer 2 12062 6

Themida 2 11350 968

VMProtect 2 35213 40

VMProtect 3 16635 6
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Jumps from Tigress Challenges

Obfuscator Total Jumps Identified Jumps

0000/challenge-0 2872 0

0000/challenge-1 11426 1

0000/challenge-2 10409 3

0000/challenge-3 3421 0

0000/challenge-4 2725 1

0003/challenge-0 24623 2

0003/challenge-3 3579 1
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Simplified JNLE Obfuscated by Code Virtualizer 1
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1
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1

2: 0x00000001

4: CMP_FLAGS

1

15: And

2
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6: And
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10: And
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8: Shr
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12: Shr
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19: Shr
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2
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2

15,863 nodes and 19,717 edges→ 34 nodes and 40 edges
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Conclusion

• Generation and simplification of dynamic data flow graphs can

remove the effect of obfuscation

• Input-dependent jumps can be used to reveal the relation

between obfuscated and original execution

• Performance can be improved by using better algorithms with

parallel execution

• Our work can be applied to improve other techniques such as

symbolic execution

• We plan to perform further control flow analysis
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