
Identifying Input-Dependent Jumps from Obfuscated
Execution using Dynamic Data Flow Graphs
Software Security, Protection, and Reverse Engineering Workshop

December 4, 2018

Joonhyung Hwang and Taisook Han

Korea Advanced Institute of Science and Technology



Overview

Introduction

Our Approach

Experimental Results

Conclusion

2 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Introduction



Introduction

Obfuscation

• Semantics-preserving program transformation

• Makes analysis difficult both for humans andmachines

• Useful when you cannot trust man-at-the-end

• Used bymalware authors to evade detection and analysis

3 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Introduction



Understanding Obfuscated Code

Inside-Out Approach

• Directly analyzes program behavior

• Not limited to particular obfuscation schemes

Dynamic Analysis

• Uses concrete values from program execution

• Covers only executed behavior

4 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Introduction



Identifying Branch Conditions

Input-Dependent Jumps

• Jumps whose target address depends on the input

• Decision points in program execution

• Can provide branch conditions to improve the coverage

Symbolic Execution

• Generates constraints for each execution path

5 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Introduction



The Problem

It is hard to identify input-dependent jumps and branch conditions

from obfuscated execution

• Expressions for the target address are too complex

• Application of symbolic execution fails or times out

6 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Introduction



Our Contribution

Simplification of Obfuscated Execution

• Computation is represented by dynamic data flow graphs

• Non-input-dependent computation is simplified to a constant

Identification of Input-Dependent Jumps

• Relation of execution before and after obfuscation is revealed

• Branch conditions are identified with reasonable effort

7 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Introduction



Overview

Introduction

Our Approach

Experimental Results

Conclusion

8 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Our Approach

Obfuscation Mitigation

• Simplify redundant operations with constant operands

• Generate and simplify dynamic data flow graphs from traces

• Traces are generated using dynamic binary instrumentation

Code Trace Graphs Jumps

9 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Dynamic Data Flow Graph

Directed Acyclic Multigraph

• Nodes represent computed values

• Nodes have id, type, and additional information

• Edges are directed from operands to operations

• Edges are labeled by position numbers.

10 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Graph Examples

42: xor eax, eax

r_42_eax

Xor

w_42_eax

1 2

1

941913: jmp 0x8b1049

s_text = 0x008b1000

0x00000049

Add

w_941913_eip

1

2

1

11 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Graph Generation

• A graph initially has nodes for output values of interest

(the target address of jumps)

• It grows by adding predecessors to nodes

• For write access, nodes are added for the operation and

reading of the operands

• For read access, nodes are added for the writing of its value

• If there is no latest writing, a node for an input variable is added

• Graphs grow until no node can be added

12 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Graph Simplification

Simplification rules are applied until no rule can be applied

• Constant value identification

• Value embedded in the binary
• Value of the trap flag

• Constant value propagation

• Data movement simplification

• Operation simplification

• Nodes that do not reach an output node are removed

13 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Simplification Rule Samples

Rules using associativity:

• (Add x . . . (Add y . . . )) → (Add x . . . y . . . )

• Same for And, Mul, Or, Xor

Like terms are combined:

• (Add x . . . x︸ ︷︷ ︸
20

)→ (Mul x 20)

14 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Simplification Rule Samples

Rules using identity:

• (Add x (Neg x))→ 0, (Add x 0)→ x

• (And x (Not x))→ 0, (And x 0)→ 0, (And x x)→ x

• (Neg (Neg x))→ x, (Not (Not x))→ x

• (Or x 0)→ x, (Or x x)→ x

• (Xor x 0)→ x, (Xor x x)→ 0

15 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Input-Dependent Jump Identification

A jump is input-dependent if its simplified graph has:

• a node for an outside input variable or

• a node for a result of a system-dependent operation

If an input-dependent jump is found, all access to flag operation

results in the computation of the jump is considered as used

16 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Our Approach



Overview

Introduction

Our Approach

Experimental Results

Conclusion

17 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Experimental Results

• Most jumps in obfuscated execution are not input-dependent

• Numbers of identified input-dependent jumps are often same

for obfuscated and original execution

• Branch condition can be understood using simplified graphs

18 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Samples

• Factorial and bubble sort programs

• For x86 Windows
• Obfuscated by Code Virtualizer 1.3.9.10 and 2.2.2.0,

Themida 2.4.6.0, and VMProtect 2.13.6 and 3.1.2.830

• Tigress Challenges

• For x64 Linux

19 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Jumps from Factorial of 10

Obfuscator Total Jumps Identified Jumps

Original 22 11

Code Virtualizer 1 24752 11

Code Virtualizer 2 10492 11

Themida 2 9895 887

VMProtect 2 56198 11

VMProtect 3 16785 11

20 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Jumps from Bubble Sort of 3, 2, and 1

Obfuscator Total Jumps Identified Jumps

Original 19 6

Code Virtualizer 1 33502 6

Code Virtualizer 2 12062 6

Themida 2 11350 968

VMProtect 2 35213 40

VMProtect 3 16635 6

21 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Jumps from Tigress Challenges

Obfuscator Total Jumps Identified Jumps

0000/challenge-0 2872 0

0000/challenge-1 11426 1

0000/challenge-2 10409 3

0000/challenge-3 3421 0

0000/challenge-4 2725 1

0003/challenge-0 24623 2

0003/challenge-3 3579 1

22 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Simplified JNLE Obfuscated by Code Virtualizer 1

1: 0x00000003

27: CMP_FLAGS

1

33: JZ

1

2: 0x00000001

4: CMP_FLAGS

1

15: And

2

21: And

2

6: And

1

10: And

1

17: And

1

24: Or

1

23: Shl

1

3: v_0x0012ff34 = 0x00000000

2

8: Shr

1

12: Shr

1

19: Shr

1

5: 0x00000080

2

13: Xor

1

7: 0x07

2

14: Not

1

9: 0x00000800

2

2

11: 0x0b

2

1

25: Shl

1

16: 0x00000040

2

20: Not

1

18: 0x06

2

1

2

22: 0x01

2

2

26: Shr

2

1

2

34: w_948461_eip

1

28: s_v_lizer = 0x0041b000

30: Add

1

32: Add

1

23

29: 0x00002c37

2

31: 0x00002c1d

2

15,863 nodes and 19,717 edges→ 34 nodes and 40 edges

23 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Simplified JNLE Obfuscated by Code Virtualizer 1

1: 0x00000003

27: CMP_FLAGS

1

33: JZ

1

2: 0x00000001

4: CMP_FLAGS

1

15: And

2

21: And

2

6: And

1

10: And

1

17: And

1

24: Or

1

23: Shl

1

3: v_0x0012ff34 = 0x00000000

2

8: Shr

1

12: Shr

1

19: Shr

1

5: 0x00000080

2

13: Xor

1

7: 0x07

2

14: Not

1

9: 0x00000800

2

2

11: 0x0b

2

1

25: Shl

1

16: 0x00000040

2

20: Not

1

18: 0x06

2

1

2

22: 0x01

2

2

26: Shr

2

1

2

34: w_948461_eip

1

28: s_v_lizer = 0x0041b000

30: Add

1

32: Add

1

23

29: 0x00002c37

2

31: 0x00002c1d

2

24 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Simplified JNLE Obfuscated by Code Virtualizer 1

1: 0x00000003

27: CMP_FLAGS

1

33: JZ

1

2: 0x00000001

4: CMP_FLAGS

1

15: And

2

21: And

2

6: And

1

10: And

1

17: And

1

24: Or

1

23: Shl

1

3: v_0x0012ff34 = 0x00000000

2

8: Shr

1

12: Shr

1

19: Shr

1

5: 0x00000080

2

13: Xor

1

7: 0x07

2

14: Not

1

9: 0x00000800

2

2

11: 0x0b

2

1

25: Shl

1

16: 0x00000040

2

20: Not

1

18: 0x06

2

1

2

22: 0x01

2

2

26: Shr

2

1

2

34: w_948461_eip

1

28: s_v_lizer = 0x0041b000

30: Add

1

32: Add

1

23

29: 0x00002c37

2

31: 0x00002c1d

2

25 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Experimental Results



Overview

Introduction

Our Approach

Experimental Results

Conclusion

26 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Conclusion



Conclusion

• Generation and simplification of dynamic data flow graphs can

remove the effect of obfuscation

• Input-dependent jumps can be used to reveal the relation

between obfuscated and original execution

• Performance can be improved by using better algorithms with

parallel execution

• Our work can be applied to improve other techniques such as

symbolic execution

• We plan to perform further control flow analysis

27 Identifying Input-Dependent Jumps from Obfuscated Execution using Dynamic Data Flow Graphs Conclusion


	Introduction
	Our Approach
	Experimental Results
	Conclusion

